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ABSTRACT

As complex machine learning systems become more widely
adopted, it becomes increasingly challenging for users to un-
derstand models or interpret the results generated from the
models. We present our ongoing work on developing interac-
tive and visual approaches for exploring and understanding
machine learning results using data cube analysis. We pro-
pose MLCube, a data cube inspired framework that enables
users to define instance subsets using feature conditions and
computes aggregate statistics and evaluation metrics over
the subsets. We also design MLCube Explorer, an interac-
tive visualization tool for comparing models’ performances
over the subsets. Users can interactively specify operations,
such as drilling down to specific instance subsets, to per-
form more in-depth exploration. Through a usage scenario,
we demonstrate how MLCube Ezplorer works with a public
advertisement click log data set, to help a user build new
advertisement click prediction models that advance over an
existing model.

CCS Concepts

eInformation systems — Data management systems; On-
line analytical processing; eHuman-centered computing
— Visualization; eComputing methodologies — Ma-
chine learning;

Keywords

Interactive data analysis; machine learning; data cube; data
visualization

1. INTRODUCTION

As machine learning systems become more widely adopted,
they are also becoming increasingly complex. Applying ma-
chine learning techniques on large-scale, real-world problems
often entails many steps, including feature extraction, fea-
ture transformations, model selection, and model evalua-
tion [4, 21]. Each component itself may introduce its own
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complexity. For example, it is non-trivial to extract mean-
ingful feature sets from a large number of attributes [2]. In
practice, as machine learning systems increase in size and
complexity, they are often viewed as “black box”, as there
are no effective ways for understanding the internal mecha-
nisms of these complex systems or interpreting their model
results 11} [19].

The importance of helping users interpret machine learn-
ing models has received increasing attention. Recent works
|12} |1}, |11} |119] highlighted that while overall model accuracy
can be used to select models, users often want to under-
stand why and when a model would perform better than
others, so that they can trust the model and know how to
improve the model. Current interpretation approaches often
focus on explaining single models (e.g., computing feature
importance from a boosted tree), but they cannot be directly
applied on other models (e.g., neural networks) since the
internal working mechanisms of different models can vary
widely |11}, [19]. Current visualization approaches primarily
support instance-based explanation (e.g., how individual in-
stances contribute to a model’s accuracy) |1, [18]; more work
is needed to find out if they may scale up to larger data sets
or more complex systems.

Introducing MLCube Explorer. This paper presents
our ongoing work on developing an interactive visualization
tool for comparing machine learning models’ performances
and exploring model results using data cube analysis. Our
goal is to help users interactively explore and determine the
right abstraction level of analysis — as comparing two mod-
els by their overall accuracies is often too coarse and not
conducive to discovering contributing causes; and inspect-
ing individual instances within a large data set is too fine-
grained and may not scale — our work helps user reach the
“happy medium.”

Specifically, our proposed MLCube framework enables users
to define instance subsets using relational selections over
features, and compute aggregate statistics and evaluation
metrics over the subsets. Through our MLCube Explorer
(Figure [1)), users can visually explore these subsets and in-
teractively specify operators to further analyze the results.
For example, they can drill down into subsets to explore
relationships among features and examine how they affect
model results. Users can freely define subsets with both raw
data attributes and transformed features.

Drilling down model results. MLCube introduces a
new way for users to select instance subsets using both data
attributes (e.g., the titles of text documents) and features,
which are often derived from attributes (e.g., number of
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Figure 1: A screenshot of MLCube Explorer, our interactive visualization tool for analyzing and comparing
machine learning results. Each row represents a subset. The subset summary view (middle) visually shows
several statistics for each subset (e.g., count, proportion of positive instances, distribution of prediction
scores, and model’s accuracy). The correlation matriz view (right) visualizes accuracy differences between
two models for a subset combination (e.g., user_age_group=1 AND position=3). A cell with a larger circle means
there are more instances in that subset combination. Yellow means Model A outperforming Model B; green
means Model B outperforming Model A. The darker the color, the greater the performance difference. Users
can interact with the interface in several ways, including drill-down, sorting subsets, and adding new subsets.

terms in the titles). Prior research has shown that lever-
aging features in explanations is a key to interpreting ma-
chine learning results . The feature-based analysis
can generalize to any models that share the same feature
sets, unlike model-specific explanations . Our approach
advances over prior work |§], by allowing users to interac-
tively select subsets based on their knowledge of any feature
transformations that have been carried out, and also keep
track of the intermediate stages in the workflow. This func-
tionality is important because raw data attributes are often
transformed into features through feature engineering (e.g.,
as in calculating the number of terms from the titles) [2].
Slicing results by features may impede user understanding,
since revealing relationships between the data attributes and
the behavior of machine learning algorithms could accelerate
understanding of model behavior 1g].

Interactive visualization. To help users quickly get an
overview of the data and model results and spot interest-

ing patterns and anomalies, ML Cube Explorer allows users
to visually explore aggregate statistics over subsets of data
instances and interactively drill down into models. This en-
ables users to find interesting patterns between features and
model results, leading to discovering insights that help them
understand the mechanisms of the models and further im-
prove their performance.

Our contributions are:

e ML Clube, a data cube inspired framework that enables
users to explore aggregate statistics and evaluation
metrics over the user-defined subsets. (Section [3)

e MLCube Explorer, a visualization tool for interactively
exploring MLCube for analyzing and comparing mod-
els’ performances. (Section [d))

We demonstrate how MLCube Explorer works with a public
advertisement click log data set through a usage scenario
of building advertisement click prediction models. (Sec-

tion



2. BACKGROUND: A TYPICAL MACHINE
LEARNING PIPELINE

In this section, we describe a typical workflow of building
machine learning models for data sets (see Figure , to mo-
tivate and provide the context for MLCube’s contributions.
For example, as MLCube is defined over data, features, and
model results, we will first explain the terminology and sym-
bols for describing them. Building machine learning mod-
els in practice often involves several steps, including data
pre-processing, feature extraction, feature transformations,
model building, and model evaluations [4, 21]. To illustrate
with a concrete example, we use the task from the 2012
KDD Cup competition (Track 2)E| whose goal is to build
advertisement click prediction models.

A raw data table R is a relation having a set of at-
tributes A and consisting of a set of instances. Each instance
r; € R consists of a set of attribute values r;[A;]. An at-
tribute value could be either single-valued or multi-valued,
where its data type could be integer, float, or text. For the
case of advertisement prediction, each instance represents
an event in which an advertisement is shown to a user under
a certain setting. Its attributes include user ID, age, gender,
ad ID, the title of an ad, query ID, query text, position of
ad on a webpage, binary value of whether the user clicked
the ad (1 if clicked; O otherwise), etc. Using the database
terminology, the raw data table R can be thought of as a
joined relation of a log table (i.e., fact table) with several
entity tables (e.g., Users, Ads) [14].

The next step is the feature extraction or feature trans-
formation procedure that constructs a set of features from
a raw data table R. This step consists of a set of feature
functions F, taking a raw data table R as an input and
producing a feature vector table X (and labels y) that
will be used as an input for a learning model [3]. Each fea-
ture function F; € F produces a j-th feature value z;; for
a given instance r;. In other words, each instance r; will be
transformed into a feature vector x; = (zi1, ..., Zij, ...) and
a label y; € {0,1}. Some feature functions may simply se-
lect an attribute (e.g., user’s age), while others may perform
computation. For example, an average function may com-
pute the average click-through rate for each ad ID; a tf-idf
function may calculate tf-idf text similarity between a query
and the title of an advertisement [25].

Given a feature vector table and labels, engineers would
then run different machine learning algorithms on them.
Once a prediction model h(X,y) is constructed (e.g., lo-
gistic regression), it will be used to classify test instances
x;. For each instance, the model produces a prediction
score s; and determines its corresponding predicted label
9i € {0,1}. The performance of the models is evaluated us-
ing a evaluation measure [ (e.g., accuracy, AUC score),
which takes as input a list of (label y, score s or predicted
label §) pairs, and outputs a single value (i.e., the measure).

3. MLCUBE: DATA CUBES FOR MACHINE
LEARNING

We present MLCube, a data cube inspired framework for
analyzing machine learning model results. Our approach
enables users to flexibly analyze and understand model re-
sults at the subset level, through interactively exploring and
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machine learning results by computing aggregate
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generating a wide range of instance subsets (see Figure [3]).
A subset is defined as a relational selection over a feature
vector table X or the raw data table R (e.g.,user_gender
= ‘female’). MLCube computes aggregate statistics (e.g.,
accuracy) for all user-defined subsets.

While OLAP is traditionally defined over a fact table
consisting of a set of dimension attributes and a measure
attribute, MLCube is defined over R <t X <y X s X
y. The primary keys (PKs) of all five relations are in-
stances’ unique ID, and all join conditions apply only on the
PKs. As all intermediate data are included, a subset can
be defined not only over features, but over data attributes
(e.g., ad_title contains ‘car’), or over a combination of
multiple components (e.g., ad_title contains ‘car’ AND
tfidf_sim_query_title >= 0.7 AND label = 1).

For the measure attributes of the cube (i.e., values to be
aggregated), we find the following measures particularly use-
ful for analyzing model results:

e Accuracy (or any evaluation measure, such as
AUC) for a model: Computing accuracy by sub-
sets allows engineers to understand which data regions
work better or worse for a selected model. If accuracy
for a certain subset is relatively low, engineers may
want to inspect the corresponding instances.

e Accuracy difference between two models: Com-
paring a new model to a control model in a subset-level
is particularly useful for model selection, as it could
describe which parts of data helps improve or degrade
the model performance.

e Number of instances(model-independent): Instance
counts help engineers understand the data distribu-
tions and find important subsets (e.g., they may ignore
subsets with very small number of instances).

e Proportion of positive instances(model-independent):

Helps with feature engineering by showing which fea-
tures are more discriminative.
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In addition to the above measures, there could be many use-
ful measures we can define. For example, computing score
distributions of positive (or negative) instances helps people
understand the result of a model.

While subsets can be defined as any relational selection
with SQL-like expression, a set of dimension attributes (i.e.,
categorical) is often selected in practice because of scalability
issues, since infinite number of subsets could be generated.
By default, MLCube selects all categorical attributes (i.e.,
cardinality less than certain threshold) and create discrete
bins for selected numerical (continuous) attributes and fea-
tures. To speed up statistics computation over subsets, the
MLCube is then partially materialized for these subsets. In
our implementation, we use an algorithm described in [17]
(Algorithm 1) with Apache Sparkﬁ and constrain the maxi-
mum number of dimensions to 4.

4. VISUAL EXPLORATION OF MLCUBE

This section presents MLCube Ezxplorer, an interactive vi-
sualization tool for exploring machine learning results us-
ing MLCube. Interactive visualizations has been proven to
be very effective for finding interesting patterns and spot-
ting anomalies from large, multidimensional data by effec-
tively representing data and allowing users to interact with
them [22} 23 [1} |15]. We first introduce the interface of our
visualization tool and describe operations for users to inter-
act with the interface. Then we present a usage scenario of
how the tool can help a machine learning engineer under-
stand models.

4.1 User Interface

Figure [1f shows a screenshot of MLCube Ezplorer, visual-
izing the performances of (one or) two user-selected models
by subsets. Each row represents a subset. By default, we
show all subsets consisting of one selection predicate cho-
sen from feature vectors. The column of each subset row
is divided into two areas: (1) the subset summary view
which shows summary statistics for each subset and (2) the
correlation matrix view which visualizes its pairwise cor-
relations to other subsets. As for the subset summary view,
we visualize the number of instances, the proportion of pos-
itive instances, the prediction score distributions of posi-
tive/negative instances for each model, and the accuracy
value for each model. As for the correlation matrix view,
each cell visualizes the accuracy difference between two mod-
els for a subset combination (e.g., user_age_group=1 AND
position=3). A cell with a larger circle means there are
more instances in that subset combination. Yellow means
Model A outperforming Model B; green means Model B out-
performing Model A. The darker the color, the greater the
performance difference.

4.2 Interactive Operations

Users can interact with the interface to further explore
ML Cube using the following operations.

1. Drill-down/Roll-up into a subset: By clicking a
subset (e.g., user_age_group = 0), its predicate will
be applied to all other subsets, updating all values and
visual elements in all rows and cells.

Zhttp://spark.apache.org/
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Figure 4: Owur user Jane finds that a subset of
instances ‘“user_age_group = 0” performs distinctly
worse than the other age groups, indicated by the
left-most solid bar in the accuracy column.

2. Adding user-defined subsets: Define a new subset
based on a user-defined relational selection predicate.
The new subset will be added as a new row.

3. Using different measures: Different measures may
be used in the correlation matrix view (e.g., AUC score
difference, proportion of positive instances).

4. Sorting subsets: Subset rows can be sorted using
any measure attributes (e.g., count) to help reveal in-
teresting patterns and spot anomalies.

4.3 Usage Scenario

We present a usage scenario for MLCube Ezxplorer to demon-
strate how it may help our user Jane, a machine learning
engineer working at a search engine company, to build new
advertisement click prediction models that advance over an
existing model.

Jane uses a public data set from the 2012 KDD Cup com-
petitionEl It is an advertisement click log from the Tencent
search engine, soso.com. Each data instance describes in-
formation about a user, an ad, a query, and whether the
user clicked the ad. Jane implements some of the learn-
ing features presented in the winning team’s report [25] and
created a few models, including logistic regression, decision
tree, and boosted tree.

Recognizing data encoding issue. Jane begins her
exploration by visualizing the existing model to understand
its performance. She quickly finds that a subset of instances
“user_age_group = 0” performs distinctly worse than the
other age groups, indicated by the left-most solid bar in the
accuracy column in Figure[d] To understand why, she exam-
ines how the age groups were defined. She realizes that the
feature function that generates this feature has encoded null
data as 0 and considered this feature as numerical variables.
She thinks that this might cause the degraded performance.
To fix this issue, she redefines this feature as a categorical
variable, instead of a numerical variable, which could im-
prove the performance of the model by separating the null
instances from others.

Analyzing the performance improvement. After
getting the hints for improving the model performance, she
now would like to try different learning algorithms and com-
pare their performance with that of the baseline model. To
create a visualization, she sets the baseline boosted tree
model as model A (shown in dark yellow in Figure and

3http:/ /www.kddcup2012.org/c/kddcup2012-track?2
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Figure 5: Example of analyzing performance im-
provement. Jane sees model B has significantly im-
proved over model A for the subset “user_age_group
= 0”. She drills down into that subset by clicking it
and observes interesting patterns between accuracy
and the tfidf_sim_query_title feature.

picks a logistic regression model with additional features as
model B (shown in green). The visualization shows that,
overall, model B outperforms model A. In particular, Jane
sees model B has significantly improved over model A for the
subset “user_age_group = 0” (Figure [fp). To further ana-
lyze this subset, she drills down into it by clicking it, and she
observes a few important patterns for the tfidf_sim_query_
title featureﬁ (see Figure ): (1) the majority of model B’s
improvement over model A comes from subsets with lower
similarity scores (the wide gaps between yellow and green
bars) — this means model B is quite accurate even when
the advertisement titles are not that similar to the user’s
search query; (2) the accuracy difference between model A
and B decreases as the similarity increases. In addition to
the “user_age_group = 0” subset, she finds out that model
B outperforms model A for several other subsets. Thanks to
these discoveries, she decides to look into the model further
by creating more variations with different parameters and
features.

4.4 System Implementation

We implemented (1) a simple declarative machine learn-
ing framework following the pipeline in Section [2] (2) ML-
Cube which works on top of the framework (Section , and
(3) MLCube Ezplorer (Section[d). The framework is imple-
mented based on the pipeline introduced in Section [2| using

4This feature measures similarity between a query and the
title of an ad by representing each text field as a TF-IDF
term vector and computing cosine similarity between two

vectors .

Python, scikit-learn, and PostgreSQL. Within the frame-
work, we implemented several learning features presented in
the report by the winner of the KDD Cup and imple-
mented several models, including logistic regression, deci-
sion tree, and boosted tree, also based on the report. As we
mentioned earlier, ML Cube is partially materialized with a
algorithm described in . ML Cube Ezxplorer is written in
HTML, JavaScript, and D3.js. It can run on any modern
web browser. When a user specifies two created models to
compare, the server returns the corresponding MLCube in
JSON format and the client code generates the visualization.

S. RELATED WORK

Importance of model interpretation. As the com-
plexity of machine learning algorithms increases, many re-
searchers have recognized the importance of interpreting the
models . Traditional approaches focused on methods
that explain specific models, such as computing the impor-
tance of each feature and visualizing the internal structure
of models . However, these approaches are difficult for
explaining complex models and comparing different algo-
rithms . Kulesza et al. presented a list of questions
that users may ask about models and used interactive visual-
izations that explain the reasons for the models’ predictions.

Visualization tools. Many researchers have developed
interactive visualization tools that help users understand
machine learning models . Amershi et al.
developed a tool that shows the distribution of instance re-
sults and let users examine them by each instance, but this
type of visualization often suffers from scalability issues, as it
is impossible to visualize all instances in screen. Researchers
have utilized features to explain how they affect models
: Kulesza et al. used the importance weight of
each feature in the Naive Bayes algorithm, and Krause et
al. used partial dependence that shows the relationships be-
tween features and results. Furthermore, to enable users to
analyze results not only by predefined features, McMahan et
al. presented their internal tool that enables users to de-
fine subsets for comparing models. One limitation of current
approaches is that they do not consider the entire pipeline,
which limits the expressiveness of the subset definition and
the understanding of the holistic picture . Our tool aims
to enable users to slice the model results in various ways for
interactively analyzing and understanding them.

Leveraging data pipeline. Patel et al. presented a
development environment for developers to implement clas-
sification models. They argued that interactive tools that
support the entire machine learning process can accelerate
the understanding of models. Sculley et al. also argued
that the bottleneck of practical machine learning systems is
often caused by the lack of data dependency over the ma-
chine learning pipelines. The database community acknowl-
edges the importance of managing data flow. With this ex-
pertise, many researchers have studied on helping machine
learning engineers perform feature engineering , but
only a few researchers have studied on model selection or
interpretation @ Chen et al. @ developed a prediction
cube framework to examine the effect of features using data
cube analysis. Our approach advances over prior work by
allowing users to interactively define subsets over attributes
or any other intermediate data and developing visualizations
for the cubes.



6. ONGOING WORK

This work opens up many interesting scalability challenges.
We plan to develop efficient materialization techniques (e.g.,
by using monotonicity property, parallel computation) [17].
As the cube is accessed by interactive tools, it would also be
possible to interactively materialize cubes while users navi-
gate cubes by predicting the next possible user steps as in [9]
15). In addition, we plan to develop efficient techniques to
rank interesting subsets (e.g., subsets with the largest accu-
racy differences between models) [7] |20 [8].

We will also continue to improve the design of visualiza-
tion interfaces and interactions to improve the usability and
utility of the tool |1} |5]. We plan to conduct a series of user
studies to evaluate how our tool can help machine learning
engineers ease their workflow of developing effective machine
learning models with a deeper understanding of the relation-
ships between data and models.
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