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ABSTRACT

In this paper, we propose an object ranking method for
search and recommendation. By selecting schema-level paths
and following them in an entity-relationship graph, it can in-
corporate diverse semantics existing in the graph. Utilizing
this kind of graph-based data models has been recognized
as a reasonable way for dealing with heterogeneous data.
However, previous work on ranking models using graphs has
some limitations. In order to utilize a variety of semantics
in multiple types of data, we define a schema path as a basic
component of the ranking model. By following the path or
a combination of paths, relevant objects could be retrieved
or recommended. We present some preliminary experiments
to evaluate our method. In addition, we discuss several in-
teresting challenges that can be considered in future work.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Retrieval models, Information
filtering; H.2.8 [Database Management]: Database ap-
plications

General Terms

Algorithms, Experimentation

Keywords

object retrieval, graph, ranking model, recommender sys-
tems, information retrieval, entity-relationship graph, simi-
larity search

1. INTRODUCTION

With the growing amount of data available on the Web
and enterprises, retrieval systems and recommender systems
have gained popularity by analyzing the data and providing
preferrable objects to the users. In addition to the grow-
ing amount of data, the types of data have become more
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diverse. For example, although traditional retrieval systems
only need to consider webpages and textual data in those
webpages, current systems consider various types of data,
such as products, multimedia objects, information on the
map, the user, clickthrough log, and even some contextual
information (e.g. time and location). Thus processing these
heterogeneous data has become an important issue for rank-
ing models of retrieval and recommender systems.

Graph-based data models have recently gained popularity
for dealing with these heterogeneous data. By using a graph,
various types of data can be easily expressed. In particular,
objects in the real world and relationships between them can
be represented in the form of an entity-relationship graph.
Examples include social networks among people, structured
knowledge in Wikipedia, hyperlinked Web, and relational
data stored in enterprises’ databases. A variety of real-world
objects and relationships can be easily represented by nodes
and edges in the graph. Thus, using graph-based data mod-
els has become a reasonable solution for dealing with this
heterogeneity.

However, existing work on ranking models using graphs
has some limitations in fully capturing the semantics of dif-
ferent types of data. Since different edge types (e.g. author-
paper, paper-publisher) convey different semantics, we need
to deal with them differently. However, much of the work
considered only the structure of the graph without utilizing
the types of nodes or edges [7, 9]. In order to differentiate
the types of data, ObjectRank [5] assigned different weights
to each type of edge. However, the edge-level feature is still
insufficient in expressing the delicate meanings embedded
in various types of data [20]. While some edge types (e.g.
author-paper) are not needed for some specific tasks (e.g.
recommending related conferences given some keywords),
they could play an important role in other tasks (e.g. finding
papers whose authors are the same). Recently, the path-level
feature has been mentioned by several researchers as a re-
placement for the edge-level feature [20, 25]. A schema-level
path, which is a sequence of edge types, makes it possible
for an edge to have a different role depending on the tasks.
Therefore, it enables us to create more semantically-enriched
applications.

In this paper, we propose an object ranking method that
focuses on paths in an entity-relationship graph for the task
of search and recommendation. We define a schema path
in the heterogeneous graph, which helps to capture diverse
semantics in the data. The schema path represents the ex-
isting workflows of search or recommendation, and beyond
that, it can express a new way of ranking by discovering
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Figure 1: Example of heterogeneous data graph. Using the DBLP publication dataset, we build a data graph

which has types on both nodes and edges.

novel paths. Through traversing these paths in the graph,
the relevant or preferrable objects are retrieved or recom-
mended to the query users. As on-going work, we present
some preliminary experiments, and discuss several challeng-
ing issues that can be considered in future work.

The rest of the paper is organized as follows. After re-
viewing the literature in Section 2, we introduce the data
model in Section 3, and formalize the problem in Section
4. Then we describe the ranking method in Section 5. Sec-
tion 6 provides preliminary experiments on real datasets,
and Section 7 discusses several possible directions for future
research. Finally, we conclude the paper in Section 8.

2. RELATED WORK

In this section, we review several related areas. We intro-
duce keyword search in database and recommender systems.
Then we present some work on ranking models using graphs
for handling heterogeneous data.

The aim of keyword search in database is similar to our
problem; its goal is to search entities from structured data
[22, 9]. Instead of using complex queries like SQL for retriev-
ing structured data in relational databases, keyword queries
are used to specify the user’s information needs. Researchers
often express relational data as a graph [14], then try to find
nodes that are close to the query nodes. However, most of
these methods focus more on the structure of the graph [22]
(e.g. finding minimal subgraphs) than the meaning of rela-
tions. In other words, they do not differentiate the type of
edges, which makes it hard for ranking models to capture
semantics in the data. Moreover, they usually do not take
the task of recommendation into account. The recommen-
dation task usually requires traversing the same edges on
the schema graph more than once. For example, collabora-
tive filtering [2] finds similar users using user-item relation,
and use this relation again for recommending items (e.g.
USER — ITEM — USER — ITEM). However, they do not as-
sume this scenario because most search tasks do not need to
traverse the same edge multiple times.

On the contrary, recommender systems infer the query
user’s unknown preference by finding similar users in order
to recommend objects [2], while keyword search retrieves en-
tities that exactly match the query. If we take a music rec-
ommendation as an example, instead of recommending songs
that have been played many times before by the query user,
they recommend new songs that have not been listened be-

fore by him, but he may likely to listen to. However, since
it primarily focuses on only two types of entities, user and
item, most well-known methods cannot be easily extended
to incorporate multiple types of data. Some researchers try
to incorporate various contextual information into the rec-
ommender systems [3, 15, 23] and build flexible querying
framework [1, 18], but most of them do not deal with het-
erogeneous data. In order to process multiple types of data
and utilize the advantages of finding similar objects, we de-
fine schema paths that enable us to find similar objects in a
heterogeneous graph.

There are many papers that recognize the power of graphs,
and use graph data models for ranking. The earlier work,
such as PageRank [7], only focused on homogeneous data.
After that, ObjectRank [5] extended PageRank by assign-
ing different edge weights depending on the type of edges,
then ranks objects using random walks. Recently, some re-
searchers have sporadically reported that path instead of
edge in a graph is a key feature in this kind of heteroge-
neous graph. Sun et al. proposed meta path-based frame-
work, PathSim [25], for top-k similarity search. Lao et al.
proposed path-constrained random walks model [20]. They
built a path tree and combined the result of several paths.
Varadarajan et al. [29] proposed a query language for flex-
ible querying on graph by using the path. The Semantic
Web commnity has been trying to rank objects in the RDF
graph [16, 27, 12]. The user writes SPARQL query language
to inform the system how to leverage the typed RDF graph
[12]. Instead of using SPARQL, Dritsou et al. used path
query for querying RDF databases [11]. We think that our
contribution lies in not only introducing a ranking method
that can be used for a variety of search and recommendation
tasks, but also presenting research directions for the path-
based ranking based on the previous work focusing on the
path in the graph.

3. DATA MODEL

The data are represented as a heterogeneous data graph,
and we build schema graph which contains the type infor-
mation of nodes and edges in the data graph. We assume
the data conveys several different types of objects (e.g. doc-
uments, movies, users, tags, and textual description) and re-
lationships between these objects. After transforming these
data into the graph, multiple types of nodes and edges are
created.



DEFINITION 1. Data Graph. A data graph is a typed
directed graph Gp = (V,E,Ty,Tg), where V is a set of
nodes, E C V x V is a multi-set of edges, Ty is a set of
node types, and Tk is a set of edge types. There are a type
mapping function of the nodes ¢v : V — Ty, and that of the
edges ¢ : E — Tg. FEach node v € V' 1is uniquely assigned
to a node type ¢p(v) € Tv, and each edge e(v; — v;) € E is
also assigned to a single edge type ¢(e) € Tg.

Figure 1 shows the example of heterogeneous data graph.

The dataset is collected from the DBLP publication database®,

and the node type of the graph consists of paper, title, au-
thor, conference, year, and publisher.

A schema graph is defined by expressing type information
of the above graph.

DEFINITION 2. Schema Graph for Data Graph. A
schema graph is a directed graph Gs = (Tv,Tg), where Ty
is a set of nodes that are the same as the set of node types
in the data graph Gp, and similarly Te C Tv X Ty is a set
of edges that represent the edge types in Gp.

There are some notable differences between other graph-
based data models and our model. The data model used in
keyword search in database often has attributes on nodes [9,
22]. Thus, in order to analyze the graph, both the structure
of graph and attributes of nodes need to be considered [26].
On the other hand, the RDF data model does not have at-
tributes and types on the nodes [16, 27]. The data model
looks more simple, but it is little more difficult to deal with
the type of nodes because the node type is not treated as a
special feature of the data model. Our model is a hybrid of
these two models, which means our nodes do not contain at-
tributes, but have types. Therefore, we only need to analyze
the structure of graph, and it is easier to capture semantics
of both nodes and edges. We note that our data model is
similar to heterogeneous information networks from Han et
al. [13].

3.1 Example: Building Graphs from Relational

Databases

The data storage models that express objects and relation-
ships, such as relational database (RDB) and XML, could
be transformed into our data model. As a representative
example, we explain how to convert relational database into
our model.

3.1.1 Data Transformation

The data stored in the relational database should be con-
verted with minimal loss of information. The method we
explain here is similar to the way of transforming RDB to
RDF discussed in the Semantic Web community [24].

The procedure is as follows. First, we build a schema
graph. A node is created for each relation. If there exist
foreign-key relationships between relations, edges are con-
nected to them. Then we also create a node for each at-
tribute in the relation, and connect the relation node and
the attribute node with an edge. Here, not all attributes
need to be included. Similarly, a data graph is constructed.
While the schema graph consists of relations and attributes,
the data graph consists of tuples and values. Figure 3 shows

http://dblp.uni-trier.de/xml/
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Figure 2: Example of relational database collected
from a music streaming service

Figure 3: Schema graph built from music database.
The edge types are omitted.

the schema graph constructed from the database of a music
streaming service depicted in Figure 22.

3.1.2 Feature Node Extraction

After transforming the original data, extracting features
from value nodes helps to capture diverse semantics. In-
stead of using the raw data values in the database, we ex-
tract several features from the values based on their data
type (e.g. long text, timestamp). Firstly, terms can be
extracted from textual values based on the idea of bag-of-
words [10]. For instance, from the title ‘DISCOVER: Key-
word Search ...’ [14], we extract term nodes like ‘discover’,
‘keyword’, ‘search’; etc. We also extract several features
from the values whose type is timestamp [4]. For example,
from the timestamp ‘2 August 2011, 11:20 AM’, the feature
nodes ‘2011’ (year), ‘8’ (month), ‘11’ (hour), ‘Tuesday’ (day
of week) could be generated. After defining these kinds of
rules based on their data types, feature nodes and edges are
added to the data graph. Figure 4 shows how we add the
nodes and edges.

e Objectrank:
authority-based

Figure 4: Subgraph of the data graph with feature
nodes and edges. Several term nodes are added,
then edges between title nodes and term nodes are
formed.

2The edge types are omitted since it is straightforward to
note the meaning of the relations.



4. PROBLEM

In this section, we formalize the problem. Given a query
and target type, the system returns top-k objects (nodes).

DEFINITION 3. Object Ranking given Query. Given a
schema graph Gs = (Tv,Tg) and data graph Gp = (V, E,
Tv,Tk), the user specifies a query Q and target type of
objects d. € Ty. A query Q consists of a set of nodes
Q = {v1,...,vn}, where each node v, € Q is in the data
graph Q C V. A target type of objects d, is defined by se-
lecting a node in the schema graph Gs. Given a query Q
and target type of objects d,-, the system scores all candidate
nodes v € V of target type ¢(v) = d,, then returns top-k
nodes whose scores are high.

The following examples show how some search and recom-
mendation problems can be defined. To find papers using
some keywords, the target type would be a paper, and the
query would be several terms. If we want to personalize the
result, the query user can be added to the query. Another
example is context-aware recommendation. It aims to sug-
gest objects (items) by considering a user and his context,
such as time and location [3, 15]. The query could be a
specific user, timestamp, and location, and the target type
could be a song if its domain is music.

S.  RANKING OBJECTS WITH PATHS

In this section, we describe how to rank objects using
paths. We first describe how to select paths from the schema
graph. By following these paths from a query to target,
objects are ranked.

5.1 Selecting Paths

We first define a schema path, then explain how to find
these paths.

5.1.1 Definition of Schema Path

A schema path represents a workflow for analyzing the
data in order to rank objects. We define it as a sequence of
edge types extracted from the schema graph.

DEFINITION 4. Schema Path. A schema path p is a se-
quence of edge types p = (t1,...,tm), where the edge type
ty € Te U Inu(TE) comes from the schema graph Gs. Here
Inv(TE) returns a set of edges whose direction of the edges
in Tr are reversed. The edge types are connected in a line,
tail(t1) = ¢(vq) where vy € Q, head(tr) = tail(ti+1), and
head(tm) = d,>.

We present some examples of schema paths. The schema

1 1

hasTerm™ hasName™

path ‘(term) ——— (ARTIST:name) ——— (ARTIST)

s o—1
hasArtist™ (TRACK)* represents a workflow that first finds

artists whose names contain terms in a query, then returns

-1
their songs. Another path ‘ (TRACK) ~2T7* _, (LISTENLOG)

—1
hasUser, (ysgr) 2e2Us” . (LISTENLOG) %%, (TRACK)

JrasAlbum, (ALBUM)’ expresses a workflow that given a song,

3If there is an edge e(v; — v;) from v; to vj, it satisfies
head(e) = v; and tail(e) = v;.

asTerm™' . .
4The edge type hasTerm , is generated by changing the

hasTerm

direction of the edge type ————.

finds similar songs based on the fact that two songs are sim-
ilar if the same user listened to both of them. Then it rec-
ommends albums that contain these similar songs.

5.1.2 Finding Candidate Schema Paths

The next step is to find the schema paths for the spe-
cific search or recommendation task. The problem lies in
that there could be too many candidate paths. When the
query and target type of objects are given, the leftmost and
rightmost node are determined. Then it becomes possible
to generate an infinite number of paths from the graph be-
tween these two nodes. In order to restrict the number of
candidate paths, we impose some constraints to the schema
paths based on the characteristics of the tasks.

We introduce three types of schema paths depending on
the task. The first type is used for typical search tasks. The
second type can be used for finding similar objects. The
last type, which combines these two types, is targeted at
the recommendation tasks that include similarity search.

Firstly, typical search tasks do not require the process of
finding similar objects. In other words, we only need to
find simple connecting paths between the query and tar-
get instead of including certain nodes multiple times as in
‘(PAPER) — (AUTHOR) — (PAPER) — (BOOKTITLE) .

DEFINITION 5. Simple Connecting Path for Typical
Search. This type of schema path p satisfies the condition
that all the nodes (i.e. tail(t1), head(t1), ..., head(ty),
..., head(ty,)) in the path p are different from each other.

The next category of the path is targeted at finding sim-
ilar objects. It represents a workflow that returns similar
nodes whose type is the same as the type of the query node
tail(t:1) = head(tm ). This type of path can be used to find
similar objects for expanding the current state. For exam-
ple, when searching documents, the process of finding syn-
onyms, called query expansion, would be helpful. The path

hasTerm ™1 hasTerm

would be (term) ———— (DOCUMENT) ———— (term).
We assume the shape of the path is symmetric, that is, the
right half of the path is generated by copying the left half.

DEFINITION 6. Symmetric Path for Finding Similar
Objects. The shape of this type of schema path p looks sym-
metric. The number of edges m in the path p = (t1,...,tm)
is even m = 2l, where | is an integer. After the left half
of the schema path is determined, the right half of the path
is automatically generated by copying the left half with inv
function inv(ty) = tm—g+t1, where 1 < k < 1 and inv(t)
returns the edge whose direction is reversed.

By combining these two types of paths, we can create

a path for several recommendation tasks. Some tasks could

be decomposed into typical search part and similarity search

part. For example, recommendation for songs are done by

searching songs that have been listened to by the user, then

suggesting songs whose artists are the same. The path would
hasUser 1! hasTrack

be (USER) —— (LISTENLOG) ———— (TRACK)

hasArtist hasArtist™t

———— (ARTIST) ——— (TRACK). This kind of path
p= (t1,...,tm) includes the subset of paths p = (ta,..., )
that satisfies the conditions of the symmetric path, where
1<a<b<m.

5The edge types are omitted
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(term) (TRACK:title) (TRACK) (ALBUM) (TRACK)

target type d,.

from Data Graph

Figure 5: The schema path gives a guideline to fol-
low the edges on the data graph.

To sum up, the number of possible candidate paths de-
creases by imposing several constraints on the paths. The
process of finding candidates can be done by using simple
graph operations. The simple connecting paths could be
found by simple modification of graph traversal algorithms.
The symmetric paths could be produced by constructing a
tree from the node.

5.2 Following a Single Path

By following a single schema path which represents a sin-
gle workflow, we can obtain a ranked result of target objects.
A schema path gives us a guideline to follow the data graph
from the query to target.

As we defined, a schema path is a sequence of edge types.
Starting from the query node, we follow the edges on the
path one by one. Figure 5 shows how we traverse the data
graph. The query Q determines the initial state. Then we
consider only a bipartite graph G, whose edge type is t1,
which is a subgraph of the data graph Gp. Based on the
scoring function f(vy;vs,tr), where ¢(ve) = tail(tsx) and
¢(vy) = head(tx), we obtain the scores of nodes vy on the
right side of the bipartite graph. This propagation process
is done iteratively through all edges on the path. After the
iterations, the final scores of nodes whose type is target type
are obtained.

We formalize this process using a matrix equation [29] as
follows:

r =M ~--M(1)q:Aq, (1)

The query q represents the initial state by assigning ¢; = 1
if ¢; € Q, otherwise ¢; = 0. The matrix M represents the
scoring function for the bipartite graph. The value of i-th
row and j-th column of the matrix m;; represents a score
of node v; determined by node vj, that is f(vi;vs,tx). If
we multiply the matrices M*®) for each edge type i on the
path, we obtain A. Then by multiplying A by q, we obtain
r which informs the final score of nodes whose type is the
target type d.

Then the question arises as to how to define a scoring
function f(vy;vs,tr) for the bipartite graph in order to as-
sign the values of the matrices. We introduce three of the
possibilities.

The first method is based on simple propagation. A score
of node vy becomes positive if it is connected to the query
nodes, otherwise the score is 0. The equation is written as:

foysvas i) oc {e(va = vyi ti) }- (2)

The numerator |{e(vz — vy;tr)}| denotes the number of
edges from v, to v, whose edge type is tx. Since the data
graph G'p has a multiset of edges, it is possible to have mul-
tiple edges between these two nodes. However, it is hard to
differentiate the relatedness of the nodes v, to the query be-
cause this method only considers the semantics of the num-
ber of paths from the query node. In order to reflect various
semantics of the data, we need scoring functions that utilize
additional graph properties such as the degree of the nodes.

The second scoring method is a random-walk based one
that captures authority. This method is similar to the ran-
dom walk with restart model [5, 20]. The equation is written
as:

: {e(ve = vyite)} _ [{e(va — vy tr)}|
f(’uy,vz,tk)oc = .
{e(va = v te)}] deg™ (ve;tr) 3)
3
The denominator deg™ (v, ; t1,) refers to the number of edges
from the node v, where the edges’ type is tx. This func-
tion is likely to assign higher scores to popular nodes [6].
In other words, the nodes with higher degree tends to get
higher scores. However, this kind of authority flow has some
disadvantages in that our goal is not always to find author-
itative objects, but to find relevant objects with respect to
the query.
To tackle this issue, we introduce third scoring function.
The equation is written as:

[{e(ve = viti) } O [{e(v. = vys i)}
{e(ve = vite) U {e(v: = vy i)}

_ [ew: = vy; )} |
Geg™ (v 1) + dog (vy; k) — [{e(va = vy )]

(4)

f(vy§vmtk) X

By placing deg™ (vy;tx), we can diminish the effect of au-
thority flow. It looks similar to the jaccard similarity co-
efficient used for set similarity [8]. We can give some vari-
ations to this formula based on properties like the number
of edges and degree of the nodes. If we eliminate the term
[{e(ve — wvy;tk)}| in the denominator, it looks similar to
the dice coefficient [25]. A detailed study would be helpful
in finding more appropriate measures.

5.3 Combining Results from Paths

The results obtained from several paths could be com-
bined. As the search engines incorporate features to improve
the quality of ranking [21], aggregating the results from sev-
eral paths helps to improve the user’s satisfaction. The pro-
cess of aggregating can be done with a weighted combina-
tion of results. The weights can be determined by service
providers [5], users, or some learning models (e.g. learning-
to-rank) [21, 20]. Details about the aggregation process are
not the scope of this paper.

6. PRELIMINARY EXPERIMENTS

In this section, we provide preliminary experimental re-
sults. We define four retrieval or recommendation tasks us-
ing real-world datasets, and show that our method works
with some example queries. This paper leaves detailed evalu-
ation including comparison to other methods as future work.

6.1 Datasets

We used two real-world datasets: a music dataset, and
DBLP publication dataset.



Table 4: Results for finding similar papers with two different paths.

Path 1

Path 2

1 DISCOVER: Keyword Search in Relational Datab.
2 Discover Relaxed Periodicity in Temporal Datab.

3 Discover Relev. Env. Feature Using Concurrent Reinf. Learning
4 Mining Propositional Knowl. Bases to Discover Multi-level Rules

1 DISCOVER: Keyword Search in Relational Datab.

2 ObjectRank: Authority-Based Keyword Search in Datab.
3 ObjectRank: A System for Auth.-based Search on Datab.
4 Keyword Proximity Search on XML Graphs

5 Mining Multivar. Time-Ser. Sensor Data to Discover Behav. Envel.||5 Efficient IR-Style Keyword Search over Relational Datab.

Table 1: Results for searching songs with keyword

query.
Query #1: “snow”

Query #2: “love story”

1 Snow Snow Snow |[[ 1  Love Story
2 Snow 2 White Love Story
3  Snow Dream 3 Theme From Love Story
3 April Snow 4  Story
5  Another Story

10 .L.e.t It Snow
10 Melt The Snow 15 Never Ending Story

Table 2: Queries for finding related conferences.
Query #1  “twitter”
Query #2 “graph clustering”
Query #3 “transaction lock protocol optimizing”
Query #4 “language model smoothing”

Table 3: Results for finding related conferences.
Rank | Query #1 | Query #2 | Query #3 | Query #4

1 WWW KDD ICDE SIGIR
2 ICWSM CIKM SIGMOD ECIR
3 CHI ICDE VLDB CIKM
4 ECIR ICDM DASFAA AAAI
5 WSDM SDM CIKM WWW

The music dataset is provided by Bugs®, one of the largest
music streaming service in South Korea. It contains meta-
data of songs, albums, and artists, and listening log by the
user. The form of raw dataset is relational data, so we con-
vert these data into the graph by following the explanation
in Section 3. There are about 902,000 nodes and 2,960,000
edges. The database schema is almost same as that in Fig-
ure 2, but there are small differences in that we know the
album’s genre instead of the track’s genre.

Another dataset is collected from DBLP”. We collect the
publication information of conference papers from 20 ma-
jor conferences in database and information retrieval area.
From its original form XML, we transform it to the rela-
tional database [22], then convert it to the graph. There are
about 407,000 nodes and 911,000 edges.

6.2 Tasks

We present several scenarios of search and recommenda-
tion tasks.

Basic Keyword Search.

The first task is the simple search task. The user writes
a keyword query into the music retrieval system, and it
retrieves several songs whose titles contain terms in the

hasTerm™

query. The schema path we define is (term) —>

Shttp://www.bugs.co.kr/
"http://dblp.uni-trier.de/xml/

Table 5: Results for recommending artist by com-
bining two paths.

s Rank for Indiv. Path
Rank Artist’s name Path T Path @
1 Black Eyed Peas 1 21
2 8Eight (local) 8 2
3 V.0.S. (local) - 1
4 Eminem 4 37
5 Ciara 2 86

(TRACK:title), and the third scoring function is used. Through

this experiment, we aim to check whether our scoring func-
tion works. We use two different keywords queries, and the
results are shown in Table 1. First of all, the songs ranked
higher if the term frequency (TF) is high as the rank of ‘Snow
Snow Snow’ is higher than that of ‘Snow’. The length of doc-
ument also affects the result since ‘Snow Dream’ is ranked
higher than ‘Melt The Snow’. Moreover, the inverse docu-
ment frequency (IDF) also affects the result because ‘Story’
is ranked higher than ‘Love’ while the term ‘Love’ appeared
more frequently than ‘Story’ in the dataset.

Recommendation with Longer Path.

The next task uses longer paths for recommending confer-
ences. Given some keyword queries, we want to find some
conferences that are highly related to the keywords in the
query. We use the second scoring function in order to assign
higher scores to authoritative conferences. The schema path

is (term) 22Term T (papER:title) 24T (pAPER)

hasBooktitle, (ppPER:booktitle). We use four different key-
word queries shown in Table 2. Each of them is related to
the areas of Web and social network, data mining, databases,
information retrieval, respectively. The results are shown in
Table 3. and they are just as we expected. As can be seen,
the conferences that are ranked at the top are one of the
most authoritative conferences in each area.

Different Paths.

Next, we want to explore how two different paths can
produce different results. The task is to find papers that
are similar to a given paper. We select two different schema
paths. The first path helps to find the papers whose titles are
similar to the query paper: (PAPER) — (PAPER:title) —
(term) — (PAPER:title) — (PAPER)®. The other path al-
lows the ranking model to find the papers that share the au-
thors with the query paper: (PAPER) — (PAPERAUTHOR) —
(PAPERAUTHOR: author) — (PAPERAUTHOR) — (PAPER). The
paper titled ‘DISCOVER: Keyword Search in Relational ...’
[14] is used as a query. The result is shown in Table 4. As
we can see, the semantic meanings of these two results are
different. If we compare the papers at rank 2, the result

8The edge types are omitted.



from the second path ‘ObjectRank...’ seems more similar
in terms of the content of the paper. However, we would not
be able to say which result is always better. It depends on
the application and the query user’s information needs.

Combining Paths for Recommendation.

Lastly, we combine the results from two different paths for
personalized recommendation. The scenario is that, given a
specific user and current date, the system recommends the
musical artists based on the user’s listening log, and daily
popularity inferred from the log. The schema paths we used
are ‘(USER) — (LISTENLOG) — (TRACK) — (LISTENLOG) —
(USER) — (LISTENLOG) — (TRACK) — (ARTIST)’ and ‘(date)

— (LISTENLOG:listendatetime) — (LISTENLOG) — (TRACK)

— (ARTIST)’. The first path finds similar users using the log
as in collaborative filtering [2], then recommends artists. The
second path guides the system to recommend artists who
are popular on that particular date, which can be thought
of as a simple version of context-aware recommendation [3,
15]. The results are shown in Table 5. Since the query user
likes hip-hop, some hip-hop artists (rank 1, 4, 5) are rec-
ommended. In addition, some local artists (rank 2, 3) are
recommended based on the daily popularity. Although it
is very simple combination of the results, it is possible to
combine the paths in more various ways.

7. DISCUSSION

As on-going research, we present several possible direc-
tions for future research.

7.1 Learning

The ranking model could be improved by adopting some
learning techniques. Firstly, instead of assigning the weights
of candidate paths manually, the system can learn the im-
portance of each path for the specific task [20].

If we have a gold standard for the task, the weights could
be automatically found by analyzing the relationships be-
tween features. A variety of learning-to-rank algorithms [21]
can be adopted as a learning model. In addition, the type
of target objects could be determined automatically with-
out being specified by the user. Adopting the techniques
used in other related areas would be helpful. The work in
keyword search in database determines the target objects by
analyzing the candidate subgraphs [9]. In desktop search,
Kim et al. [17] studied on type prediction; given a query, it
determines which type of objects (e.g. email, presentations)
should be retrieved.

7.2 Efficiency

Although we have not discussed any efficiency issues, sev-
eral performance problems will arise when the size of data
becomes large. Materializing the results for some paths that
are queried frequently could be one of the solutions for this
issue. Instead of propagating the sequence of edges every
time the user inquires, we can save the results in advance
[25]. Filtering is another technique that can be used to im-
prove the performance. When we propagate through edges,
the nodes whose scores are too low could be removed based
on threshold [19]. Since we only have interest in the top
part of the ranked result, filtering does not largely affect
the final result. We also used this filtering strategy for our
experiments.

7.3 Flexible Querying Framework

To increase the expressiveness of the query, we can pro-
vide a variety options to the users by developing a flexible
query language or querying framework [29]. For example,
the framework may allow users to use operators or condi-
tional clauses in the query, choose the scoring functions, and
define more complex schema paths that are not just the se-
quence of edges as we defined. Moreover, the model could
be improved by allowing users to interact with results. For
instance, the users could provide feedback to the system.
As search engines use the technique called relevance feed-
back, our path-based ranking method would allow the users
to change the weights of paths if they think that the weights
are inappropriate.

7.4 Result Presentation

The path-based ranking method enables the creation of an
explanation about why the object is included in the ranked
result. As hundreds of features are utilized in the rank-
ing model of the search engines and recommender systems,
users are more likely to have doubts why some objects are
ranked higher. Explanation has been recognized as a solu-
tion for this problem [30, 28]. For example, a music rec-
ommender system gives an explanation of why the song is
recommended, such as “Your friend likes this song, but since
you have not listened to it, would you like to try it?”. We
could generate this kind of explanation automatically by us-
ing the information of the schema paths, such as the node
types included in the paths and the weight of each path.

8. CONCLUSIONS

In this paper, we propose a method for ranking objects
in an entity-relationship graph. We define a schema path
which implies the semantics of the heterogeneous data. It
gives a guideline to follow the graph. By walking through
the graph with the schema paths, the system ranks objects
for search or recommendation tasks.

It has recently been recognized that the path in the graph
is a useful feature for analyzing complex data [20, 25, 29,
11]. However, there is still much room for improvement,
and we hope that more research will be conducted on the
path-based ranking model for search and recommendation.
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