
Ranking in Context-Aware Recommender Systems

Minsuk Kahng, Sangkeun Lee, Sang-goo Lee
School of Computer Science and Engineering

Seoul National University
Seoul, South Korea

{minsuk,liza183,sglee}@europa.snu.ac.kr

ABSTRACT
As context is acknowledged as an important factor that can
affect users’ preferences, many researchers have worked on
improving the quality of recommender systems by utilizing
users’ context. However, incorporating context into recom-
mender systems is not a simple task in that context can
influence users’ item preferences in various ways depending
on the application. In this paper, we propose a novel method
for context-aware recommendation, which incorporates sev-
eral features into the ranking model. By decomposing a
query, we propose several types of ranking features that re-
flect various contextual effects. In addition, we present a
retrieval model for using these features, and adopt a learn-
ing to rank framework for combining proposed features. We
evaluate our approach on two real-world datasets, and the
experimental results show that our approach outperforms
several baseline methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering, Retrieval models

General Terms
Algorithms, Experimentation

Keywords
context-aware recommender systems, recommender systems,
collaborative filtering, learning to rank, ranking in informa-
tion retrieval, context, usage log

1. INTRODUCTION
The goal of recommender systems is to estimate a user’s

preference and deliver a list of items that might be preferred
by the given user. As it is recognized that preferences can be
affected by the user’s context, context-aware recommender
systems aim to provide recommendation of better quality
by utilizing available contextual information (e.g. time, lo-
cation) of the user [1, 4].

However, incorporating context into recommender sys-
tems is not a simple task in that contextual effects on the
users’ preferences can be diverse depending on the applica-
tion and domain. For example, some contextual variables

Copyright is held by the author/owner(s).
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

(e.g. weather) can affect the preferences independent of the
given user in some applications. On the other hand, there
can be user-dependent contextual effects [5]. Furthermore, a
set of contextual variables can be more important than any
one individual contextual variable [8]. Other varied forms of
contextual effects can be possible in the real world.

To tackle the problem, we propose a novel method for
context-aware recommendation, which incorporates several
features into the ranking model. We are motivated by the
ranking process in search engines, which employs various
features [6]. We first formulate the problem of context-aware
recommendation as searching the most suitable items with
respect to a given user and his context. By decomposing a
query, we propose five types of features that reflect various
contextual effects. We present a retrieval model for using
these features [7], and adopt a ranking framework called
learning to rank [6, 3] for combining proposed features.

Our approach has two major advantages. First, service
providers can improve the quality of recommendation by
simply adding appropriate features into the ranking model.
With the help of learning to rank, the system can construct
an optimal function for the application. In addition, it sup-
ports flexibility in that service providers can choose features
suitable for their specific purposes.

2. PROBLEM FORMULATION
The user’s behavior, such as accessing a webpage and lis-

tening to a song, is stored in an item usage log. An item
usage log has a set of events E = {E1, . . . , En}. An event
Ei consists of user ui, context ci, and item di. We define
context as a composition of contextual values vit, where vit
is an instance of t-th contextual variable. Table 1 shows an
example of an item usage log.

We define the problem of context-aware recommendation
as follows: Given a query q, which consists of a user u and
his current context c, the system ranks all candidate items
d ∈ D, and recommends the top-k suitable items. In other
words, for each candidate item d, p(d|u, c) is calculated, and
then the system produces a list of k items whose probabilities
are the highest.

Table 1: Example of Item Usage Log
User Context Item

Username Time of Day Location Weather Song ID

bluesky morning office sunny 340
bobsmith evening coffee shop rainy 370
musiclover evening home cloudy 370

3. RANKING ITEMS USING CONTEXT

3.1 Ranking Features
We propose five types of features that reflect various con-

textual effects. To obtain them, we decompose a query that
consists of a user u and a set of contextual values v.

The first type of feature does not consider any component
of the query; items are recommended based on their global
popularity. The probability of an item d given a user u and
context c can be written as:

p(d|u, c) ∝ p(d).

The second type of feature, similar to the traditional col-
laborative filtering [2], considers the user for recommending
items. The equation becomes:

p(d|u, c) ∝ p(d|u).

The third type of feature considers one individual con-
textual variable. Preferences are dependent on individual
contextual values regardless of the user as shown below. For
example, some song items are preferred more on rainy days.

p(d|u, c) ∝ p(d|v).

The fourth type of feature pairs up two of the components:
the user and any one contextual variable. It models user-
dependent contextual effects [1, 5]. For instance, some users
like certain songs in the morning, while others do not.

p(d|u, c) ∝ p(d|u, v).

The last type of feature considers all components of the
query, which can be thought of as abstracted context [8].

p(d|u, c) ∝ p(d|u, v1, . . . , vT),

where T is the number of contextual values.

3.2 Retrieval Model
We adopt the existing LDA-based document retrieval model

proposed by Wei and Croft [7]. Based on the query likeli-
hood model they used, we assume p(d|u, c) ∝ p(u, c|d). For
the fourth type of feature, the model can be written as:

p(u, v|d) =λ
(Nd

Nd + µ
pML(u, v|d) + (1− Nd

Nd + µ
)pML(u, v|C)

)
+ (1− λ)pLDA(u, v|d),

where pML is for the maximum likelihood estimation, ‘C’
represents the whole item collection, and pLDA is for the
LDA. The LDA topic model finds similar users or context
by extracting the latent topics z from the given data:

pLDA(u, v|d) = p(u, v|θd, β) =
∑
k

p(u, v|zk, β)p(zk|θd).

3.3 Learning to Rank Items
Once we have several features and the retrieval model, we

need a ranking function to produce a ranked list of items.
Using a machine learned ranking framework called learn-
ing to rank [6], we obtain a ranked result by combining
the features. We choose to use Ranking SVM, one of the
well known learning to rank algorithms. To apply this pair-
wise approach, we randomly generate some negative feed-
back since we have only positive feedback, and we assume
that the item selected by the user is more preferred than
any other item.

4. EXPERIMENTS
We evaluate our method on two real-world datasets. First,

we use a music listening log gathered from the music stream-
ing service called Bugs (http://www.bugs.co.kr). We in-
corporate all five types of features into the model using
user and three contextual variables: date, time of day, and
weather. Second, we collect a place ‘check-in’ log from the
location-based service named Foursquare (http://foursquare.
com). We choose user, GPS location, date, and time of day.
The system suggests the top-k places for a query.

We use normalized discounted cumulative gain (NDCG) as
an evaluation measure. We consider each event as a different
query, and check if the model produces a list that includes
the item in the event [5]. We compare our method to three
baseline methods: popularity (type 1), collaborative filtering
using LDA (type 2), and reduction-based approach [1].

Table 2 shows a comparison of our method to the baseline
methods on two datasets. Our method which uses Ranking
SVM outperforms all baseline methods. This is because
our approach, compared to other methods, can incorporate
various types of features into the unified ranking model.

Table 2: NDCG@k comparison on two datasets

Method Music Foursquare
@5 @10 @5 @10

Popularity 0.0670 0.0902 0.0199 0.0246
User only (CF) 0.0687 0.0946 0.0822 0.0996

Reduction 0.0909 0.1030 0.2368 0.2408
Ranking SVM 0.2161 0.2359 0.4612 0.4890

5. CONCLUSION
In this paper, we propose a novel method for context-

aware recommendation by incorporating several features into
the ranking model. We propose five types of features that
model various contextual effects. We present a retrieval
model for using these features, and utilize the learning to
rank framework for combining the features. The experi-
mental results show that our approach performs better than
some baseline methods.

6. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Context-aware

recommender systems. In Recommender Systems Handbook.
Springer, 2010.

[2] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news
personalization: scalable online collaborative filtering. In
WWW ’07. ACM, 2007.

[3] F. Diaz, D. Metzler, and S. Amer-Yahia. Relevance and
ranking in online dating systems. In SIGIR ’10. ACM, 2010.

[4] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver.
Multiverse recommendation: n-dimensional tensor
factorization for context-aware collaborative filtering. In
RecSys ’10. ACM, 2010.

[5] D. Lee, S. E. Park, M. Kahng, S. Lee, and S.-g. Lee.
Exploiting contextual information from event logs for
personalized recommendation. In Computer and Information
Science 2010. Springer, 2010.

[6] T.-Y. Liu. Learning to rank for information retrieval. Found.
Trends Inf. Retr., 3:225–331, 2009.

[7] X. Wei and W. B. Croft. Lda-based document models for
ad-hoc retrieval. In SIGIR ’06. ACM, 2006.

[8] E. Zheleva, J. Guiver, E. Mendes Rodrigues, and
N. Milić-Frayling. Statistical models of music-listening
sessions in social media. In WWW ’10. ACM, 2010.

