Ranking Objects by Following Paths in Entity-Relationship Graphs

Minsuk Kahng, Sangkeun Lee and Sang-goo Lee

School of Computer Science and Engineering Seoul National University, Seoul, Republic of Korea

4th Workshop for Ph.D. Students in Information and Knowledge Management (PIKM 2011) in conjunction with CIKM 2011

October 28th, 2011

Problem

- Objective
 - Given some query objects, rank objects of a specified type
- Examples
 - For a given user and current timestamp, which songs are most preferable?
 - For a given paper,
 which conferences are most relevant to be submitted?

Outline

- Introduction
- Data Model
- Method
- Preliminary Experiments
- Related Work
- Challenging Issues
- Conclusion

Heterogeneous Data for Search

- Various types of data for search and recommendation
 - Traditionally, only documents and words
 - Now, various objects and relationships between them
 - Documents, Products, Music, User, Clickthrough Log, Map, Contextual Data (e.g. time & place)
- Incorporating these heterogeneous data is key!

Utilize Graph-based Data Model

- Graph-based data models have gained popularity for dealing with these heterogeneous data.
 - Objects and relationships can be modeled by nodes and edges.
 - It is called "Entity-Relationship Graphs".
- Solve the problem with graph operations

User	Doc	Click	Time
#12	cikm10.org	0	11:00
#12	cikm11.org	1	11:01
#500	•••	0	13:45
#500		0	13:46
#500	***	1	13:46
#904	***	1	13:51

Original database

Object Ranking with Graphs

- With graph-based data models
 - Problem Definition
 - Given query objects, rank objects of a specified type
 - With graph models, it becomes:
 - Which target nodes are most similar to the query nodes?
- Challenges
 - How to define similarity between nodes in the graph?
 - Not just shortest distances
 - Capture semantics of structured data

Existing work, but...

- Homogeneous Graph
 - focus on structure of graph, not consider 'type' of nodes/edges
 - PageRank inlink/outlink of nodes, random walks, ... [1]
- Consider the type of edges: Edge-level feature
 - Each edge has a 'type'.
 - ObjectRank Each edge type has different weight [2].
- But still, hard to capture semantics
 - Importance of edge type is always same regardless of tasks
 - [1] Brin and Page. ... hypertextual web search engine. In WWW, 1998. [2] Balmin et al. Objectrank: authority-based keyword search In VLDB, 2004.

Path-level feature instead of edge

- Recently, the path-level feature has been mentioned as a replacement for the edge-level feature [3, 4].
 - Each path, a sequence of edge types, has weight.
 - An edge has a different role depending on the tasks.

feature	weight				
hasAuthor	0.90				
hasTitle >	0.50				
<u> </u>	0.35				
pubWhere >	0.15				
a data lastal fa atruma					

edge-level feature

path-level feature

[3] Sun et al. PathSim: meta path-based top-k similarity In VLDB, 2011. [4] Lao et al. ... retrieval ... path constrained random walks. In ECML-PKDD, 2010.

Proposed: Object Ranking with Paths

- We propose an object ranking method.
 - Transform original data into graph-based data models
 - Use paths in the graphs for ranking

Outline

- Introduction
- Data Model
- Method

Data Graph & Schema Graph

- Data graph Instances (types both on nodes & edges)
- Schema graph Schema of data graph

Example of data graph

Using DBLP dataset, we build a data graph which has types on both nodes & edges.

Method Overview

Problem

Given query nodes and target type,
 which target nodes are most relevant to the query nodes?

Steps

- Choose schema paths from the schema graph
- 2. For each path, look into data graph, and score target nodes
- 3. Combine those results of each path

1-1) What is Schema Path?

- A schema path p is a sequence of edge types.
- Represents a workflow of how we traverse the graph.

1-2) Choose Schema Paths

- Discover candidate schema paths, and select some of them.
 - Simply, find all paths between two nodes on schema graph
 - 1) User > Log > Song > Album
 - 2) User > Log > Song > Artist > Album

- Symmetric Paths
 - a) User > Log > Song > Log > User
 - b) Song > SongTitle > Term > SongTitle > Song

symmetric path

- Expanding with Symmetric Paths
 - 1+a) User > Log > Song > Log > User > Log > Song -> Album (CF)
 - 1+b) User > Log > Song > STitle > Term > STitle > Song > Album

2-1) For each path, look into data graph

- For each path, look into data graph, and score target objects.
- From query to target, follow edges in the path.

$$r = M^{(m)} \times ... \times M^{(1)} \times q = A \times q$$

2-2) How to give scores to nodes?

- How to give scores to the nodes during propagation?
- Define scoring functions
 - Number of paths
 - Distribute the current state equally (random walk)
 - Distribute, but not equally (e.g. for diminishing popularity effect)

3) Combine the results

- Now, we have scores of nodes obtained from each path.
- Weighted combination of each result
 - Manually
 - End user
 - Learning (e.g. learning-to-rank)

weight of
$$j$$
-th path
$$R(x_i,q) = \sum_j w_j \times R_j(x_i,q)$$
 j -th objects of target type score of i -th object obtained from j -th path

Outline

- Introduction
- Data Model
- Method
- Preliminary Experiments
 - Datasets
 - Tasks (Scenarios)

Two Real-world Datasets

- Music streaming service (Bugs Music)
 - Music Metadata (song, album, artist, genre)
 - Users' Listening Log
 - e.g. "'User #12' listened to 'Song #59' at time t."
 - Node types: song, album, artist, genre, user, date, log, etc.
- DBLP publication
 - All papers published in 20 major conferences
 - Node types: paper, author, conference, etc.

Task #1: Basic Scenario

- Scenario: Recommend related conferences
 - Input: a set of terms
 - Output: Conferences
- Path
 - (Term) -> (PaperTitle) -> (Paper) -> (Conference)

Query #1: "twitter" 1 WWW 2 ICWSM 3 CHI 4 ECIR 5 WSDM

```
Query #2:
"graph clustering"

1 KDD
2 CIKM
3 ICDE
4 ICDM
5 SDM
```


Task #2: Different paths

- Research Q: How two different paths produce different results
- Scenario: Find similar papers
 - Input: particular Paper(w/ title)
 - Output: Papers(w/ title)

Query: "DISCOVER: Keyword Search in Relational Databases"

Path #1: "(Paper) -> (PaperTitle) -> (Term) -> (PaperTitle) -> (Paper)"

- Path #2: "(Paper) -> (PaperAuthorRelation) -> (Author) -> (PaperAuthorRelation) -> (Paper)"
- 1 DISCOVER: Keyword Search in Relational Datab.
- 2 Discover Relaxed Periodicity in Temporal Datab.
- 3 Discover Relev. Env. Feature Using Concurrent Reinf. Learning
- 4 Mining Propositional Knowl. Bases to Discover Multi-level Rules
- Mining Multivar. Time-Ser. Sensor Data to Discover Behav. Envel.

- 1 DISCOVER: Keyword Search in Relational Datab.
- ObjectRank: Authority-Based Keyword Search in Datab.
- ObjectRank: A System for Auth.-based Search on Datab.
- 4 Keyword Proximity Search on XML Graphs
- 5 Efficient IR-Style Keyword Search over Relational Datab.

Task #3: Combine Paths

- Research Q: Combine results from two different paths
- Scenario: Given a user and current date, recommend artists based on user's listening log and daily popularity
 - Input: particular User, Current Date
 - Output: Artists

```
Path #1: "(User) -> (ListenLog) -> (Song) -> (ListenLog) -> (User) -> (ListenLog) -> (Song) -> (Artist)"
```

Path #2: "(Date) -> (ListenTimestamp) -> (ListenLog) -> (Song) -> (Artist)"

	Artist's name	Path #1	Path #2
1	Black Eyed Peas	1	21
2	8Elight (local)	8	2
3	V.O.S. (local)	-	1
4	Eminem	4	37
5	Ciara	2	86

Outline

- Introduction
- Data Model
- Method
- Preliminary Experiments
- Related Work
 - Keyword search in DB
 - Recommender systems
 - Graph-based Ranking
- Challenging Issues
 - Learning
 - Efficiency
 - Flexible Querying Framework
 - Result Presentation

Related Work

- Keyword Search in DB
 - Also deal with heterogeneous objects
 - More concerned with performance, not ranking
- Recommender Systems
 - Focus more on semantic similarity
 - Only two types of entities: User & Item
- Graph-based Ranking
 - Mostly edge-level
 - Recently, path-level methods have been introduced.
 - Some work with RDF & SPARQL

Challenging Issues (Future Work)

- Learning
 - can improve the quality of ranked results
 - Weights of paths can be determined (e.g. learning-to-rank) [4]
- Efficiency
 - Performance issues when data size go up
 - Materializing [3], Filtering
- Flexible Querying Framework
 - Expressiveness of query [5]
 - Provide operators, conditional clauses, choose score functions
- Result presentation
 - Explanation of results [6] (why it is ranked 1st)
 - Schema path would be helpful.
 - [5] Varadarajan et al. Flexible and efficient querying and ranking In EDBT, 2009.
 - [6] Yu et al. Recommendation diversification using explanations. In ICDE, 2009.

Conclusion

- Propose an object ranking method.
- Heterogeneous Data
 - Utilize graph-based data model to capture heterogeneity.
- Paths in Graph
 - Use schema path in the graph which implies the semantics.
- Ranking
 - By following these paths, objects are ranked.
- Discussion
 - Many challenging issues & much room for improvements

Thank you

minsuk@europa.snu.ac.kr