Exploiting Paths for Entity Search in RDF Graphs

Minsuk Kahng and Sang-goo Lee

Department of Computer Science and Engineering Seoul National University, South Korea

Abstract

- Propose an entity retrieval model for RDF data.
- Aim to capture indirect relationships between nodes in the RDF graph by considering paths as fields.

Problem

Retrieve entities using (semi-)structured RDF data.
Called 'Semantic search' or 'Ad-hoc object retrieval'.

Data: What is RDF?

Consists of triples.

Problem

- Given a keyword query *Q*, rank RDF resources *E*, which represent entities.
 - Ex. For a query 'movie james cameron', resources like '<../movie/72>' & '<../movie/6220>' are retrieved.

Motivation

Observation

- Most existing models assume the descriptions of an entity exist only at directly linked nodes (distance=1).
 - Ex. For '<../movie/72>', nodes like

	Pinovie"
"Titanic"	movic

Proposed Model

 Simulates the generation process of query Q by following paths from a resource node E to several related literal nodes L_i.

The weights are determined by defining the importance of predicates, then aggregated (above table). Otherwise, it can be learned.

Evaluation

Setup

- Followed the standard evaluation framework used in *SemSearch Challenge 2010*.
- Data : BTC collection (886M triples, 175M resources, 296M literals)
- Query set : 92 entity queries from Yahoo query logs
- Relevance Judgments : obtained from SemSearch10
- Baselines approaches :
 - Pseudo-document (plain text)
 - Attributes (directly linked literals) as fields (uni. & diff. weights)

Results

Approach	Ret.Model	MAP	P@10	NDCG	
Plain text	BM25	0.2366 🛛	0.4293 ⊽	0.4288 v	
	LM	0.2426 ⊽	0.4272 ⊽	0.4438 ⊽	1142 . 01425
Attr. (uniform w)	BM25F	0.2014 v	0.4380	0.3886 v	LIVIS > BIVI25S
	MFLM	0.2711 *†⊽	0.4783	0.4765 *†⊽	MFIM > IM
Attr. (different w)	BM25f	0.2523 ‡⊽	0.4826 †‡	0.4484 ‡⊽	
	MFLM	$0.2889*^{\ddagger 7}$	0.5076 †	$0.4913*^{\dagger \ddagger \triangledown}$	
Path	PathLM	0.3268 †‡	0.5033 †	0.5245 †‡	Path is best.

 But even if two nodes are not directly linked, they are *somewhat related* to each other.

Direction

We aim to capture indirect relationships btw nodes.
We assume *the descriptions of an entity* exist at *any (literal) node* that is reachable from the resource node.
Each *path* from *E* to *L_j* is considered as a field.

Discussion

- Only few long paths improve performance (e.g. sameAs).
- More research needed to develop ways to learn path weights.
- We added extra judgments due to insufficient relevance judgments.
- We look forward to further research in our path-based approach.
 - See our paper "Ranking Objects by Following Paths in E-R Graphs" in Ph.D workshop at CIKM 2011.

